Curriculum Vitae

Name Dr. Hiroki Tanaka

Contact Leibniz-Institut für Kristallzüchtung (IKZ)

Volumenkristalle

Max-Born-Str. 2, 12489 Berlin

+49(0)30 6392 2821 hiroki.tanaka@ikz-berlin.de

Research Interests

• Fluoride bulk crystal growth for photonics

- Materials for solid-state lasers
- Laser cooling of solids by anti-Stokes fluorescence
- Nonlinear optics for vacuum-UV generation

Education

2016 – 2018	Research assistant for Leading Graduate School program (the Ministry of
	Education, Culture, Sports, Science and Technology, Japan)
2018	Ph.D., Graduate School of Science and Technology, Keio University (Japan)
2015	Master of Engineering, Graduate School of Science and Technology, Keio
	University (Japan)
2013	Diplôme d'Ingénieur, Ecole Centrale de Lyon (France)

Research Experience

Since 2024	Leibniz Junior Research Group Leader at IKZ
2018 - 2023	Postdoctoral researcher at IKZ
2015 - 2018	Ph.D. student at Keio University (Japan)

Teaching

Funding

2024 - 2028	Photonics with ultra-pure fluoride crystals funded by Leibniz Competition
2023 - 2025	Laser cooling of highly pure rare-earth-doped fluoride crystals funded by DFG

Professional Activities and Memberships

2019 - 2023	Peer review, 43 articles
Since 2014	Membership, Optica (formerly Optical Society), the Laser Society of Japan,
	the Japan Society of Applied Physics

Honors and Recognitions

2022	Encouragement award, The Laser Society of Japan
2016	Outstanding poster presentation award, Advanced Solid State Lasers
	Conference
2016	Best student poster award, The 5th Advanced Lasers and Photon Sources
2013	Best student poster award, The 3 rd Advanced Lasers and Photon Sources

Presentations

2022 Invited talk at SPIE Photonics West conference, "Growth of highly pure

fluoride crystals for laser cooling"

2022 Invited talk at the 42nd Annual Meeting of The Laser Society of Japan, "Solid-

state lasers directly emitting in the visible using rare-earth-doped single

crystals"

2016 Invited talk at the 37th Annual Meeting of The Laser Society of Japan, "Solid-

state lasers directly pumped by GaN-based laser diode"

Ten key publications

1. <u>H. Tanaka</u>, S. Püschel, "Monte Carlo fluorescence ray tracing simulation for laser cooling of solids," Opt. Express **32**, 2306–2320 (2024)

- 2. S. J. Herr, <u>H. Tanaka</u>, I. Breunig, M. Bickermann, F. Kühnemann, Fanout periodic poling of BaMgF₄ crystals, Opt. Mat. Express **13**, 2158–2164 (2023)
- 3. S. Püschel, F. Mauerhoff, C. Kränkel, and <u>H. Tanaka</u>, "Laser cooling in Yb:KY₃F₁₀: a comparison with Yb:YLF," Opt. Express **30**, 47235–47248 (2022).
- 4. <u>H. Tanaka</u>, S. Kalusniak, M. Badtke, M. Demesh, N. V. Kuleshov, F. Kannari, and C. Kränkel, "Visible solid-state lasers based on Pr³⁺ and Tb³⁺," Prog. Quantum Electron. **84**, 100411 (2022).
- 5. S. Püschel, S. Kalusniak, C. Kränkel, and <u>H. Tanaka</u>, "Temperature-dependent radiative lifetime of Yb:YLF: refined cross sections and potential for laser cooling," Opt. Express **29**, 11106–11120 (2021).
- 6. S. Kalusniak, <u>H. Tanaka</u>, E. Castellano-Hernández, and C. Kränkel, "UV-pumped Tb³⁺-lasers," Opt. Lett. **45**, 6170–6173 (2020).
- 7. <u>H. Tanaka</u>, C. Kränkel, and F. Kannari, "Transition-metal-doped saturable absorbers for passive Q-switching of visible lasers," Opt. Mater. Express **10**, 1827–1842 (2020).
- 8. N. Sugiyama, S. Fujita, Y. Hara, <u>H. Tanaka</u>, and F. Kannari, "Diode-pumped 640 nm Pr:YLF regenerative laser pulse amplifier," Opt. Lett. **44**, 3370–3373 (2019).
- 9. <u>H. Tanaka</u>, S. Fujita, and F. Kannari, "High-power visibly emitting Pr³⁺:YLF laser end pumped by single-emitter or fiber-coupled GaN blue laser diodes," Appl. Opt. **57**, 5923–5928 (2018).
- 10. R. Sawada, <u>H. Tanaka</u>, N. Sugiyama, and F. Kannari, "Wavelength-multiplexed pumping with 478- and 520-nm indium gallium nitride laser diodes for Ti:sapphire laser," Appl. Opt. **56**, 1654–1661 (2017).